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Abstract

A new way (:)fdiagonalizing the Jaynes-Cummings Hanfiltonian is proposed, which allows

the definition of annihilation operators and coherent states for this model. Mean values and

dispersi(ms (:)ver these states are computed and interpreted.

1 Introduction

The ,}aynes-(,umnnng<' ('J.C.) model Ill, which is extensively used in Quantum Optics describes, in

its simplest version, the interaction of a cavity mode with a two-level system. In the rotating-wave

approximati(m, it may be described by the Hamiltonian [1, 2]

Hjc=w(ata+l_ao+W°a3+n(ata +aa+) (1)
2 -\ 2/

where {a,, (r.2,aa } are Pauli matrices, a o is the identity, a± = a_ + ia:, and a t and a are the photon

creation and amfihilation operators. Moreover, _ is the coupling constant, w is the field mode

frequen(:y, and coo is the atomic frequency. Let us _dso introduce the detuning A = w - coo. The

exact s()lwd)ility ()f this model is well-known. Working in the Fock space

{ (°) ,-+>("0>) /.r = .r_ _ ms -- In,-) -- I,_) ' = , n -- o, l, 2,... , (2)

the energy eigenstates take the form (for n = 0, 1,2,...)

leo) = 10,-), (a)

1 (mvi_-I- lin, +) -I- (_ + _ r(n -t- 1)) in -I- 1, -)),leg+,)- R(n + 1)

, ) )IE+) - a(n + 1) + _r(n + l) In, +> - _vf_ + lln + 1,-) ,

where

[(7 )' 7'",.(,,,)= (_ + n),/_-, _ = , R(n) = + _r(n) + _n

(4)

(5)

(6)
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In the expression of r(n) we have introduced the parameter 6 which will be important in the

following. The corresponding energy eigenvalues are

E_=wn+ar(n), E+=_o(n+l)-gr(n+l). (7)

The interest of this model, its solvability and its applications have long been discussed. More

precisely, dynmnical properties have been obtained through the use of states which are initially

harmonic oscillator coherent states [3], but that evolve according to the J.C. Hamiltonian [2, 4].

Here, we construct new coherent states which correspond to eigenstates of an annihilation operator

for H_(:,. To do that, we have to find first such an annihilation operator through the diagonalization

of the Jaynes-Cummings Halniltonian (1). Second, we use the theoretical approach, based on the

direct product of the W+,yl-Heisenberg group with SU(2), to evahmte those coherent states. Finally,

we exhibit some of their properties. More details can be found in [5].

2 Annihilation operators and coherent states for H_c
1

The diagonalization of Hjc: is performed by the unitary operator (_9, so that

Ha_ OtHjcO = ( w(N + 1)-tcr(N + 1) 0 '_
0 wU + tcr(N) ] ' (8)\

where N = ata, and the definition of r(N) is given in Eq. (6). This operator O has the form

/ 1 )/_

(_'learly, an mmihilation operator for H a is given by A d = a a o. Since the states depend also

on the spin index +, we introduce the spinorial mmihilation and creation operators:

(00)  +d(0,)- 1 0 ' 0 0 " (10)

We then obtain candidates to be annihilation and creation operators for Hjc as:

A = OAdO t, A t = OA]O t, Ee=OE±dO t. (11)

For the determination of coherent states, the situation is particularly simple when we work

with Hu in (8), since the energy eigenstates are the Fock-space basis vectors (2). The group

theoretical approach to coherent states leads us to define

Iz,/3)_ = T(z,/3LI0,-), z,/3 e C, (12)

in terms of the unitary representation of the direct product of the Weyl-Heisenberg group with

,_'U(2)

T(z,Z)d = exp[zA_ - 2A_ +/3E+d --/)E__ ]. (13)
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The coherent states for Hjc are then given by

]z,[3) = OIz, f3)d = T(z,[3)[Eo ) = OT(z,fl)dOt[Eo ) • (14)

From the harmonic, oscillator coherent states we easily get

(0) (0)Iz,f_)d= cos(0/2) ,Iz} + c'¢ sin(0/2) I ) = cos(0/2)Iz-)a + e '¢ sin(0/2)Iz+)d, (15)

with fl = (#/2)e) ¢, and Iz) the normalized state Iz) = e-lzF/2_=o(Z'_lv_.)ln}. The state Iz,[3)d

is a linear c()mbination of the "fundamental coherent states" IZ+)d and IZ--)d, which are both

eigenstates of A d (but npt of E _). Similar fundamental coherent states are defined by using such

a decomposition of Iz, _) in (14- i.

To be complete, we give the time evolution of such states; the one of the general state (15) will

be obtained easily by linear combination. We start with the diagonal case, for which the evohltion

operator is

( _it[w(N+l)-tcr(N+l)] 0 )u_(t) = e-""d = ¢_[_N+_(N)I , (16)0

and we compute Iz, +,t) = OUd(t)lz, +}d = _5c(t)OlZ,-4-)_. More precisely, we get

n

Iz,+,t>= _-I_l_/_-'_'Z.:o v_. ' (17)
n

Iz,-,t>= _-I_1_/__ _
rt=0

These are similar to the states obtained by the evolution of the harmonic oscillator coherent states,

except for the _upplementary oscillation for each n in the sum. This implies that the coherent state

does not evolve in time to mlother coherent state, unlike to the case of the harmonic oscillator.

Moreover, our states (17) are different from those considered in other approaches [2, 4]. Indeed,

all these authors de'M with the states Iz, +)_ (or a mixture of them) and their evolution is

u_(t)lz, +L = _-"'_lz,+L. (is)

3 Relevant physical quantities

Let us recall the introduction of the parameter 6 in the expression of r(n) in (6). It will be used

as a variable in the following. It contains both the detuning A and the coupling parameter t¢

and leads to the exact resonance case when 6 = 0 or to the weak coupling limit when 6 ---* _.

The parameter x = Izl 2 is also introduced, and will be proved to be a good approximation of the

number of photons. We will deal with the function

oo X n oo X n

(;(5, x) : e -x _, n--(r(n + 1) = e -z _ n--[x/6 + n + 1.
rt:0 n:0

(19)

Its asymptotic behaviour is G(6,x) _ v/x, which is independent of 6. The calculations will be

done explicitly over the states (17), aald for a general state ]z, fl, t). We can use (15) to write
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the mean value and dispersion of an operator X. Indeed, defining (X)_ = (z, t, +IX[z, t, 4-) and

(X)_ = (z, t, +[X]z, t, ZF), the mean value of X over a general coherent state is

<x) - l-cos02<x>++ l +cos02<x>_+ -5--sinO(_'_<X>+_+ _-'_<X>_+). (20)

Ill the case of having (X)+_ = (X)_+ =0, the square of the dispersion is simply

(AX) 2 _= (X2) _ <X>2 _ 1 - 2c°s0 (AX)2+ + 1 + 2c°s0 (AX)2_ + ___T_l(x)+sin2 0 ' _ (X)_12" (21)

Let us now compute the relevant physical magnitudes. The operator .hf = (ata + 1/2)a o + a3/2

corresponds to the total number of particles. It is a constant of motion and is invariant under the

transf(wmation by O. We then get

<.N>+= x + 1, <N>_= x, (A._)_ = (A._)2_= x. (22)

(Those are known results in connection with the susy harmonic oscillator.)

The evaluation of the mean values of the number of photons N = ata is less trivial, and gives

1 Ae -_ _ x n 1 1 Ae_ _ _ x n 1
(N>+ = x + 2 4-_a" _-" n[ r(n + l) ' (g)_ = x- -_ + _ _-" n[ r(n) " (23)

n=O rt=O

(_omparing with the harmonic oscillator, where (N) = x, we have a correction due to the inter-

action. Since g is usually smM1, a good approximation to the average number of photons is x.

Indeed, the contribution of the terms containing the series is, in this case, approximately 1/2.

We ('an compute the Inean values and dispersions of the energy in the fundamental states and

study their I)ehaviour with respect to both x and 6. Since (Hjc)+_ = (Hjc)_+ =0, the calculations

over the general coherent states through Eqs. (20)-(21) do not give anything new with respect to

the results fi)r the fimdaJnentM states. Indeed, we can see from (21) that the dispersion attains

his minimum over the pure states. The mean values are easily computed azld take the simple form

(H_(,>+ =w[(x+l)-AG(6, x)], (H_c>_ =w[xTAG(6-1,x)], (24)

while the values of the dispersion are more complicated and present interesting features

(AH_c)2+ = w 2 [A2(1 + 6) + (1 + A2)x + 2Ax(G(6, x) - G(6 + 1,x)) - A_(G(6, x)) 2] , (25)

(AH_c) 2_= w 2 [A26 + (1 + A2)x - 2Ax(G(6- 1,x) - G(6, x)) - A2(G(6 - 1,x)) 2] . (26)

We have introduced A = a/w. When a large number of photons is considered, we can use the

a.,ymptotic behaviour of G(6, x) to see that

(AH_c)i 1
~ -- (27)

( H jc >:_ V/-_ '

as in the harinonic oscillator case.
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Fig. 1. Behaviour of (AHjc)2+/w 2 as a function of 6 and x for A = 8.

If we want to see how the dispersion evolves with respe'ct to a variation of the characteristics

()f the system 6 and A, we analyse the form of (AHjc)2+, since (AHjc) 2_shows a similar qualitative

1)ehavi()ur. If" we fix A, the typical behaviour of (AHjc)2+ is as in Fig. 1. It can be proved that for

fixed wdues ot'(5 smaller than a certain 60, (AHjc)2+ has a minimum for x _ O.

The atomic inversion is the last quantity we will consider. Over a general coherent st,ate, we

]_1ave

where _n(t) = (h+2tnr(n+ 1). If we take A = 0 and 0 - -¢ = rr/2, we have a temporal

behaviour which is similar to the one obtained by Narozhny et al. [2] (let us recall that their

states are different from ours). It consists of Rabi oscillations, as shown in Fig. 2:

_ x n sin(2tt__) (29)(c%)= le-= -l+2Ey _+1
n=0

The deriw_tive of this function with respect to t is essentially the value obtained in Ref. [2]. In

Fig. 2, we show the graph of our (aa) for x = 20. It is similar to those obtained in many other

papers, and that although the expression of (aa) is not exactly the sane in all the cases.

These results indicate that it is reasonable to analyze the coherent states associated to the

J.C. Hamiltonian in the way we are doing, but we do not know for the present if they could be

interesting fi)r the experiments.
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Fig. 2. C_ollapses and revivals of the atomic inversion in a general coherent state for x=20 and _=0.
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